Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(7): 3327-3340, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36951106

RESUMO

Homochirality of the cellular proteome is attributed to the L-chiral bias of the translation apparatus. The chiral specificity of enzymes was elegantly explained using the 'four-location' model by Koshland two decades ago. In accordance with the model, it was envisaged and noted that some aminoacyl-tRNA synthetases (aaRS) that charge larger amino acids are porous to D-amino acids. However, a recent study showed that alanyl-tRNA synthetase (AlaRS) can mischarge D-alanine and that its editing domain, but not the universally present D-aminoacyl-tRNA deacylase (DTD), is responsible for correcting the chirality-based error. Here, using in vitro and in vivo data coupled with structural analysis, we show that AlaRS catalytic site is a strict D-chiral rejection system and therefore does not activate D-alanine. It obviates the need for AlaRS editing domain to be active against D-Ala-tRNAAla and we show that it is indeed the case as it only corrects L-serine and glycine mischarging. We further provide direct biochemical evidence showing activity of DTD on smaller D-aa-tRNAs that corroborates with the L-chiral rejection mode of action proposed earlier. Overall, while removing anomalies in the fundamental recognition mechanisms, the current study further substantiates how chiral fidelity is perpetuated during protein biosynthesis.


Assuntos
Alanina-tRNA Ligase , Biossíntese de Proteínas , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , RNA de Transferência/metabolismo , Animais
2.
Sci Adv ; 8(2): eabj7307, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020439

RESUMO

Mitochondria emerged through an endosymbiotic event involving a proteobacterium and an archaeal host. However, the process of optimization of cellular processes required for the successful evolution and survival of mitochondria, which integrates components from two evolutionarily distinct ancestors as well as novel eukaryotic elements, is not well understood. We identify two key switches in the translational machinery­one in the discriminator recognition code of a chiral proofreader DTD [d-aminoacyl­transfer RNA (tRNA) deacylase] and the other in mitochondrial tRNAGly­that enable the compatibility between disparate elements essential for survival. Notably, the mito-tRNAGly discriminator element is the only one to switch from pyrimidine to purine during the bacteria-to-mitochondria transition. We capture this code transition in the Jakobida, an early diverging eukaryotic clade bearing the most bacterial-like mito-genome, wherein both discriminator elements are present. This study underscores the need to explore the fundamental integration strategies critical for mitochondrial and eukaryotic evolution.

3.
Elife ; 72018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30091703

RESUMO

D-aminoacyl-tRNA deacylase (DTD) acts on achiral glycine, in addition to D-amino acids, attached to tRNA. We have recently shown that this activity enables DTD to clear non-cognate Gly-tRNAAla with 1000-fold higher efficiency than its activity on Gly-tRNAGly, indicating tRNA-based modulation of DTD (Pawar et al., 2017). Here, we show that tRNA's discriminator base predominantly accounts for this activity difference and is the key to selection by DTD. Accordingly, the uracil discriminator base, serving as a negative determinant, prevents Gly-tRNAGly misediting by DTD and this protection is augmented by EF-Tu. Intriguingly, eukaryotic DTD has inverted discriminator base specificity and uses only G3•U70 for tRNAGly/Ala discrimination. Moreover, DTD prevents alanine-to-glycine misincorporation in proteins rather than only recycling mischarged tRNAAla. Overall, the study reveals the unique co-evolution of DTD and discriminator base, and suggests DTD's strong selection pressure on bacterial tRNAGlys to retain a pyrimidine discriminator code.


Assuntos
Aminoaciltransferases/metabolismo , Escherichia coli/metabolismo , Glicina/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Alanina/metabolismo , RNA de Transferência de Glicina/metabolismo , Animais , Escherichia coli/enzimologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...